Lipschitz modulus in convex semi-infinite optimizationviad.c. functions
نویسندگان
چکیده
منابع مشابه
Semi-Infinite Optimization under Convex Function Perturbations: Lipschitz Stability
This paper is devoted to the study of the stability of the solution map for the parametric convex semi-infinite optimization problem under convex function perturbations in short, PCSI. We establish sufficient conditions for the pseudo-Lipschitz property of the solution map of PCSI under perturbations of both objective function and constraint set. The main result obtained is new even when the pr...
متن کاملNon-Lipschitz Semi-Infinite Optimization Problems Involving Local Cone Approximation
In this paper we study the nonsmooth semi-infinite programming problem with inequality constraints. First, we consider the notions of local cone approximation $Lambda$ and $Lambda$-subdifferential. Then, we derive the Karush-Kuhn-Tucker optimality conditions under the Abadie and the Guignard constraint qualifications.
متن کاملCalmness Modulus of Linear Semi-infinite Programs
Our main goal is to compute or estimate the calmness modulus of the argmin mapping of linear semi-infinite optimization problems under canonical perturbations, i.e., perturbations of the objective function together with continuous perturbations of the right-hand side of the constraint system (with respect to an index ranging in a compact Hausdorff space). Specifically, we provide a lower bound ...
متن کاملModulus of convexity for operator convex functions
Most of the interesting examples deal with operators that are positive semi-definite. We shall follow the same convention in this paper. Operator convex functions are known to satisfy a number of interesting properties. An important discovery was made by Hansen and Pederson, who used Eq.1 in order to obtain an operator generalization of the Jensen inequality.[1] Recently, Effros provided an ele...
متن کاملMetric Regularity in Convex Semi-Infinite Optimization under Canonical Perturbations
This paper is concerned with the Lipschitzian behavior of the optimal set of convex semi-infinite optimization problems under continuous perturbations of the right hand side of the constraints and linear perturbations of the objective function. In this framework we provide a sufficient condition for the metric regularity of the inverse of the optimal set mapping. This condition consists of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations
سال: 2008
ISSN: 1292-8119,1262-3377
DOI: 10.1051/cocv:2008052